V = ⅓ πr⊃2;t
V = ⅓ x 3,14 x 6⊃2; x 10
V = 376,8 cm⊃3;
d. t = √(s⊃2; - r⊃2;)
t = √(25⊃2; - 7⊃2;)
t = √(625 - 49)
t = √576 = 24
Lp = πr(r + s)
Lp = 22/7 x 7(7 + 25)
Lp = 22(32)
Lp = 704 cm⊃2;
V = ⅓ πr⊃2;t
V = ⅓ x 22/7 x 7⊃2; x 24
V = 1232 cm⊃3;
e. r = √(s⊃2; - t⊃2;)
r = √(4⊃2; - 3⊃2;)
r = √(16 - 9)
r = √7
Lp = πr(r + s)
Lp = 3,14 x √7(√7 + 4)
Lp = 8,31(6,65)
Lp = 55,23 cm⊃2;
V = ⅓ πr⊃2;t
V = ⅓ x 22/7 x (√7)⊃2; x 3
V = 22 cm⊃3;
f. t = √(s⊃2; - r⊃2;)
t = √(13⊃2; - 5⊃2;)
t = √(169 - 25)
t = √144 = 12
Lp = πr(r + s)
Lp = 3,14 x 5(5 + 13)
Lp = 15,7(18)
Lp = 282,6 cm⊃2;
V = ⅓ πr⊃2;t
V = ⅓ x 3,14 x 5⊃2; x 12
V = 314 cm⊃3;
2. Tentukan panjang dari unsur kerucut yang ditanyakan (lihat gambar di buku).
a. V = ⅓ πr⊃2;t
t = V x 3 : (πr⊃2;)
t = 300π x 3 : (π x10⊃2;)
t = 900 : 100 = 9 m
b. V = ⅓ πr⊃2;t
r⊃2; = (V x 3) : πt
r⊃2; = (120π x 3) : π10
r⊃2; = 360π : 10π
r⊃2; = 36
r = √36 = 6 m
t = √(s⊃2; - r⊃2;)
t = √((14,5)⊃2; - 8⊃2;)
t = √(210,25 - 64)
t = √146,25
t = 12,09 cm
d. r = √(s⊃2; - t⊃2;)
r = √(15⊃2; - 12⊃2;)
r = √(225 - 144)
r = √81 = 9 dm