d. Ada berapa solusi yang ada? Jelaskan.
e. Apa artinya bagi Bonar jika sistem persamaan linear ini memiliki banyak solusi?
Kunci Jawaban:
Jika digunakan variabel k volume kemasan kecil, s volume kemasan sedang, dan b volume kemasan besar (semua volume dalam ml).
a. Sistem persamaan:
3k + 2s + 3b = 4700
3k + s + 2b = 3300
2s + 2b = 2800
b. Semua variabel pada sistem persamaan tersebut berpangkat satu, maka sistem persamaan tersebut adalah sistem persamaan linear.
c. Eliminasi persamaan pertama dan kedua:
3k + 2s + 3b = 4700
3k + s + 2b = 3300
(dikurangkan)
s + b = 1400
Persamaan yang dihasilkan adalah persamaan yang sama dengan persamaan ketiga dalam sistem persamaan linear (seluruh persamaan dikalikan 2).
d. Proses pada (c) menghasilkan persamaan yang sama dengan persamaan ketiga (grafiknya berupa dua garis berimpit), maka sistem persamaan linear ini memiliki banyak solusi.
e. Ada banyak kemungkinan volume kemasan kecil, sedang, dan besar, contohnya k = 366,66, s = 600, b = 800 adalah solusi, k = 333,33, s = 500, b = 900 juga solusi.
3. Bu Wati membeli tiga jenis buah. Kalau ia membeli 3 kg jeruk, 3 kg pepaya, dan 1 kg salak, ia harus membayar Rp130.000,00. Jika Bu Wati membeli 2 kg jeruk, 2 kg pepaya, dan 1 kg salak, ia harus membayar Rp100.000,00. Jika Bu Wati mau membeli 1 kg jeruk dan 1 kg pepaya, ia harus membayar Rp50.000,00. Berapakah harga tiap kg setiap jenis buah?
a. Tuliskan sistem persamaan yang bersesuaian dengan permasalahan tersebut.
b. Apakah sistem persamaan itu termasuk sistem persamaan linear? Tuliskan alasannya.
c. Selesaikan sistem persamaan tersebut.
d. Ada berapa solusi yang ada? Jelaskan.
e. Apa artinya bagi Bu Wati jika sistem persamaan linear ini tidak memiliki solusi?
Kunci Jawaban:
Jika j adalah harga tiap kg jeruk, p adalah harga tiap kg pepaya, dan s adalah harga tiap kg salak (semua harga dalam ribu rupiah)
a. Sistem persamaan:
3j + 3p + s = 130
2j + 2p + s = 100
j + p = 50
b. Sistem persamaan linear karena semua variabelnya berpangkat satu.
c. Eliminasi persamaan pertama dan kedua:
3j + 3p + s = 130
2j + 2p + s = 100
(dikurangkan)
j + p = 30
Bandingkan persamaan ini dengan persamaan ketiga.
d. Grafiknya berupa dua garis yang sejajar, maka sistem persamaan linear ini adalah sistem persamaan linear yang tidak memiliki solusi.
e. Harga buah-buahan di setiap paket berbeda-beda.
• Soal dan Kunci Jawaban Kelas 10 SMA Kurikulum Merdeka, Kegiatan 1 Bab 4 Halaman 88 - 89
4. Untuk setiap model matematika berikut, tentukan apakah model matematika tersebut merupakan sistem persamaan linear atau bukan. Jelaskan.
a. 5x – 3y = 10
y = x2 – 5x + 6
b. 3x – 5y + z = 10
x2 + y2 + z2 = 8
c. 5x – 3y + 2z = 20
13x + 4y – z =15
2x – 5y -3z = 10
d. 15x – 23y + 2z = 200
31x + 42y – 1/z = 150
23x – 45y – 33z = 100
e. x – 3y +2z = 20
2x + y – 3z = 15
3x – 2y – z = 35
Kunci Jawaban:
a. Bukan sistem persamaan linear, ada variabel x2.
a. Bukan sistem persamaan linear, ada variabel x2, y2, z2.
b. Sistem Persamaan Linear, semua variabel berpangkat 1.
c. Bukan Sistem Persamaan Linear, ada variabel 1/z.s
d. Sistem Persamaan Linear, semua variabel berpangkat 1.
5. Pak Musa memiliki toko beras dan menjual campuran beras. Campuran 2 kg beras A, 2 kg beras B, dan 1 kg beras C dihargai Rp50.000,00. Campuran 4 kg beras A, 2 kg beras B, dan 3 kg beras C dihargai Rp91.000,00. Campuran 4 kg beras A, 4 kg beras B, dan 2 kg beras C dihargai Rp95.000,00. Tentukan harga tiap kg beras A, beras B, dan beras C.
a. Tuliskan model matematikanya.
b. Apakah model matematika itu merupakan sistem persamaan linear?
c. Ada berapa solusi yang dimiliki oleh sistem ini? Bagaimana kalian tahu?
Kunci Jawaban:
Jika a adalah harga 1 kg beras A, b harga 1 kg beras B, dan c adalah harga 1 kg beras C, maka
a. Model matematika:
2a + 2b + c = 50
4a + 2b + 3c = 91
4a + 4b + 2c = 95
b. Sistem persamaan linear karena semua variabelnya berpangkat satu.
c. Menentukan solusi persamaan:
2a + 2b + c = 50 | x2 | 4a + 4b + 2c = 100
4a + 4b + 2c = 95 | x1 | 4a + 4b + 2c = 95
Perhatikan bahwa ruas kiri kedua persamaan sama sedangkan ruas kanannya berbeda. Ini adalah ciri sistem persamaan linear yang tidak memiliki solusi.
6. Maria adalah penjaga tiket di sirkus. Ada tiga jenis tiket yang dijual. Keluarga Andi membeli 4 tiket anak-anak, 2 tiket dewasa, dan 1 tiket lansia dan membayar Rp640.000,00. Keluarga Butet membeli 1 tiket anak-anak, 3 tiket dewasa, dan 2 tiket lansia dan membayar Rp550.000,00. Keluarga Danu membeli 3 tiket anakanak, 1 tiket dewasa, dan 1 tiket lansia dan membayar Rp450.000,00. Berapakah harga setiap jenis tiket yang dijual Maria?
Kunci Jawaban:
Jika a menyatakan harga tiket anak, d menyatakan harga tiket dewasa, dan l harga tiket lansia (semuanya dalam ribu rupiah), maka sistem persamaannya menjadi:
4a + 2d + l = 640
a + 3d + 2l = 550
3a + d + l = 450
Ini adalah sistem persamaan linear yang solusinya. Harga a =9, d = 100, l =80. tiket anak-anak adalah Rp90.000,00, harga tiket dewasa adalah Rp100.000,00, dan harga tiket lansia adalah Rp80.000,00.
7. Kinan menimbang bola yang ada di lemari sekolah. Pada penimbangan pertama, Kinan menimbang dua bola basket, sebuah bola kaki, dan tiga bola voli dan hasilnya 2.500 g. Penimbangan kedua, sebuah bola basket, dua buah bola kaki, dan dua buah bola voli beratnya 2.050 g. Penimbangan ketiga, dua buah bola basket dan sebuah bola voli beratnya 1.550 g. Berapa berat tiap jenis bola?
Kunci Jawaban:
Jika b menyatakan berat sebuah bola basket, k berat sebuah bola kaki, dan v berat sebuah bola voli, maka model matematikanya adalah sistem persamaan linear
2b + k + 3v = 2500
b + 2k + 2v = 2050
2b + v = 1550
Solusi: b = 650, k = 450, v = 250
8. Butet ingin membeli buah. Semua buah yang ada sudah dikemas menjadi paket. Paket A terdiri atas 5 jeruk, 1 mangga, dan 8 salak beratnya 1,5 kg. Paket B terdiri atas 10 jeruk, 2 mangga, dan 4 salak beratnya 2 kg. Paket C terdiri atas 3 mangga, dan 12 salak beratnya 2 kg. Jika setiap jenis buah itu identik, berapakah berat masing-masing jenis buah?
Kunci Jawaban:
JJika j untuk menyatakan berat sebuah jeruk, m untuk menyatakan berat sebuah mangga, dan s untuk menyatakan berat sebuah salak maka masalah tersebut dapat dimodelkan ke dalam sistem persamaan linear berikut.
m + 5j + 8s = 1,5
2m + 10j + 4s = 2
3m + 12s = 2
yang solusinya adalah j=1/10, m= 1/3, s = 1/12
Solusi yang didapatkan perlu dikembalikan ke permasalahan nyata. Sesuai definisi setiap variabel, sebuah jeruk beratnya 0,1 kg, sebuah mangga beratnya 1/ 3kg, dan setiap salak beratnya 1/12 kg.
Cek Informasi Tentang Kunci Jawaban Lainnya Disini
(*)